
Deployment and optimization pipeline for YOLOv5
models on detection and segmentation tasks

Yiyang (Fred) Shi
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

fred.shi@mail.utoronto.ca

Chengqi (William) Li
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

chengqi.li@mail.utoronto.ca

Abstract—Convolutional neural networks explores dense and
rich visual information from cameras and are frequently used
in Robotics to provide perception information for many time
and safety critical tasks. Due to the real time operating nature
of robotics applications, the model needs to perform inference
in a compact and time-efficient manner. This project proposed
and implemented a 2-stage deployment and optimization pipeline
that utilizes knowledge distillation and quantization to reduce the
model inference time without severely sacrificing accuracy. We
performed verification individually on the 2 stages and compared
the inference speed and accuracy metrics against the original
models across different model architectures and objectives. Our
proposed pipeline is able to achieve significant inference speed
reduction while maintaining the model accuracy on a specific
target hardware device, helping the model to compute more
efficiently and require less resources.

I. INTRODUCTION

Convolutional neural networks have been a popular area
of research in recent years and many lightweight models are
developed and used in robotics applications. The majority of
models focus on utilizing dense and rich visual information
completed by multiple cameras with different Field of Views
and at different positions. YOLO-based object detector [1],
[2] is one of the state-of-the-art 2D object detection models,
which utilizes grids and anchors for a single-stage detection.
Due to its compact nature, YOLO detector has been adapted
for various robotics usages. However, the resources onboard
are still limited and many time and safety critical tasks
are dependent on the perception network outputs. Take the
example of an autonomous vehicle, the computation tasks
are divided into environment mappings, perception, motion
planning and control along with system supervision, and the
dedicated resources for each task are constrained. To be used
in downstream simultaneous localization and mapping as well
as behavior planning tasks, the perception information needs
to be generated within a defined time frame and confined to
the real-time system onboard strictly.

One way to generate inference data is to decentralize com-
putation and upload/download vision information to a cloud
computing cluster, which has plenty of resources. However,
this approach is not ideal for time and safety critical tasks,
as latency and network signals can vary from point to point.

Also, the method is prone to data privacy issues and requires
encryption for sensitive data.

Therefore, we would like to utilize and optimize for the
resources available and propose a 2-stage deployment and
optimization pipeline, which reduces inference latency and
increase throughput without severely scarifying the model
accuracy.

For this project, our work is summarized as follows:
1) We developed a model optimization pipeline consisting

of 2 vertically stacked parts, which are knowledge
distillation (KD) and quantization. They can be used
individually or combined together.

2) We trained and fine tuned the YOLOv5 model on
both object detection and semantic segmentation tasks
using the Cityscapes dataset [3] with 10 selected object
classes.

3) We verified the 2 stages individually and compared the
performance of models with and without the optimiza-
tion pipeline.

II. RELATED WORK

A. Knowledge distillation

Knowledge distillation (KD) was first introduced by Hinton
in the paper [4] as a model compression method to transfer
the generalization ability of a cumbersome teacher model to a
small student model for classification tasks. The student model
in KD is trained with the combination of the ground truth
label and the distilled knowledge from the teacher model. This
provides a viable solution for resource-constrained hardware
implementations of deep neural networks. The knowledge is
transferred from the teacher model to the student by mini-
mizing a loss function, aimed at matching softened teacher
logits as well as ground-truth labels. This concept served as
the fundamentals and inspired distillation implementation for
other tasks.

This project focuses on the adaptation of the paper “Dis-
tilling Object Detectors with Fine-grained Feature Imitation”
[5], which extends knowledge distillation to object detection
tasks. Unlike classification tasks, the bounding box and object
detection output can not be directly distilled. Instead, the paper
focus on matching fine-grained feature maps from the last



layer of the detection model filtered by a fine-grained imitation
mask to distill knowledge at near object locations. The mask
is generated based on the ground truth bounding box and
predefined anchor locations to outline object of interests along
with features nearby.

B. Quantization

Quantization is the process of reducing the precision of
the weights, biases, and activations such that they consume
less memory [6]. Often quantization can be applied to a
neural network with 32 bits float points representation and
convert it to a lower bits representation to reduce model size
and conserve memory. With lower bits representation, integer
operations can be used over floating point ones and the same
forward function would require fewer computations, therefore,
leads to quicker inference time. Typically 8-bit integer (int8) is
used, as many hardware optimization methods are available for
this data type. However, information are lost and quantization-
related errors will accumulate during this process. The lower
precision datatype will result in less dynamic range and
resolution and ultimately affect model precision.

Two types are quantization are available [7]. Post training
quantization does not alter the training process or require
training data, it applies quantization directly on trained model.
Many modern frameworks like OpenVINO [8] balances the
trade-off between compression and precision by taking in a
subset of model dataset to calibrate the quantized parameters
after initial quantization effort. Meanwhile, quantization aware
training optimizes a model first and uses original training
dataset to fine-tune the model to restore accuracy.

III. METHOD

A. Deployment and optimization pipeline overview

Inspired by related works in the previous section, we
would like to propose a 2-stage deployment and optimization
pipeline that contains 3 parts in total, which are Knowledge
distillation training, Evaluation & filter and final Quantization
for deployment. The pipeline should reduce the model infer-
ence time while maintaining the test precision and flexibility
for different model architecture supports. The inputs for the
pipelines are a pre-trained large cumbersome teacher model
and a lightweight student model with optional student model
checkpoints. After optimization, the model should output a
best-performing, quantized model in Int8 precision format that
is ready for deployment.

In this pipeline, we use knowledge distillation as a com-
pression technique to “capture” and “distill” the knowledge
from the teacher model to the student model which is easier
to deploy. It modifies the existing training process and train
the student model based on a combination of ground truth
labels and teacher predictions (imitation loss from teacher
feature map). As knowledge distillation is sensitive to hyper-
parameters and could not guarantee the best results, the dis-
tilled student model output is compared against a pre-trained
student model without KD for evaluation on defined metrics.
The best performing model is then passed to the post-training

Fig. 1. Proposed deployment and optimization pipeline

quantization module for further compression and optimization
for target hardware. Noticeably, knowledge distillation and
quantization are two orthogonal processes and can be used
individually or combined together.

B. Knowledge Distillation on object detection

We adopt the method of knowledge distillation in the object
detection task from [5]. Knowledge distillation for object
detection captures the valid knowledge of the object of interest
with a fine-grained feature mask. The mask is generated
according to 1, the feature map is divided into g × g grids,
and for each grid, n anchors are initialized. Then, it calculates
IOU for all initial anchors and ground truth bounding boxes,
using Ψ ∗Maximum IOU as the threshold to generate fine-
grained imitation masks im. As shown in figure 2, the red and
green bounding boxes are the anchor boxes near the ground
truth object bounding box, where the red bounding boxes have
the anchor with the largest IOU with the ground truth.

To handle the unmatched dimensions of the feature map
from student model and teacher model, an extra 2D convolu-
tion feature adaptation layer is applied to the feature map from
the student model. As shown in figure 3, the feature map of
the student model passed through the feature adaptation layer
masked by the imitation mask is used to calculate the imitation
loss of the student model.

With feature adaptation layer fadap, student model feature
map s, teacher model feature map t and imitation mask Im,
the imitation loss Limitation can be expressed as:

Limitation =
1

2Np

W∑
i=1

H∑
j=1

C∑
c=1

Imij(fadap(s)ijc − tijc)
2,

where Np =

W∑
i=1

H∑
j=1

Imij .

(1)
The overall loss function for the student model is:

L = Lgt + λLimitation (2)

C. Quantization

Quantization maps the high resolution FP32 weights and
activation function parameters in a model to lower bits Int8
representation to conserve memory and reduce computation



Algorithm 1: Imitation mask generation
input : Ground truth bounding boxes gt of size b×k×4,

[batch,max(gtbbox), [xmin, xmax, ymin, ymax]]
input : Feature map f of size b× w × h, w = h
input : IOU hyper-parameter Ψ ∈ [0, 1]
input : Grid size g × g
input : n Initial anchors for each grid
output: Imitation mask Im of size b× w × h, w = h

initialize with 0.

1 for i← 1 to b do
2 generate anchors in a batch with initial anchors

and grid size;
3 anchors ← GenerateAnchors(n, g);
4 find IOU matrix of shape [g × g × n, k] between

all anchors and all ground truth bbox;
5 IOU matrix ← FindIOU(anchors, gt);
6 max IOU ← Max(IOU matrix);
7 for iou← IOU matrix do
8 if iou > Ψ ∗max IOU then
9 correspond area in Im[i] = 1

10 else
11 pass
12 end
13 end
14 end

Teacher 
Model

High level feature 
response of teacher

Student 
Model

Fine-grained 
imitation on those 
locations

Near object 
anchor location

Fig. 2. Knowledge distillation with feature imitation [5]

efforts. The process is applied to the 2D convolution and fully-
connected layers which contribute to majority of model float-
ing point operations (FLOPS). Quantization can be applied per
tensor or per channel with different slicing methods [6], only
the tensor slicing is considered for this project. The symmetric
quantization formula calculates input low and input high for a
specific layer weights or activation function based on a scale
parameter and 8 bits integer range. The floating-point zero is
mapped directly to integer zero.

inputLow = scale ∗ levelLow

levelHigh
(3)

inputHigh = scale (4)

Teacher Model

Fine-grained Imitation MaskStudent Model

Feature Adaptation

Imitation Loss

K K

Imitation Region Generation

GT box-1 GT box-2

Fig. 3. Imitation mask generation and imitation loss via feature adaptation

TABLE I
LEVEL PARAMETERS FOR INT8 QUANTIZATION

Usage Levels LevelHigh LevelLow

Weights 255 27 − 1 −27 + 1
Unsigned activation 256 28 − 1 0

Signed activation 256 27 − 1 −27 + 1

s =
levels− 1

inputHigh − inputLow
(5)

The calculated inputLow and inputHigh in 3 and 4 are
served as the quantization range that post process parameters
will fall in. The pseudo scaling factor s is calculated as the
ratio between the desired datatype levels and quantization
range. For Int8 quantization, the bit levels value is set as for
either 255 or 256 depending on the usages. The calculated
inputLow and inputHigh are used to clamp the original layer
parameters and perform quantization shown as follow.

clamp(input; inputLow; inputHigh) =

min(max(input, inputLow), inputHigh))
(6)

output =
round(clamp(input) ∗ s)

s
+ inputLow (7)

The pseudo scaling factor s is used along with a round
operation to ensure that quantized inputs can be represented
by the desired datatype. Quantization is not a lossless process
as precision is compromised during the clamp operation. By
tuning the scale parameter, we can achieve different levels of
granularity and control the overall quantization loss. Different
bit levels value and level ranges are used for weights and
activation functions, details are shown in table I.

After initial quantization, a calibration dataset is used to
collect statistics and fine tune quantization parameters (ad-
justing the scaling parameter), additional procedures like bias
correction and channel alignment are not included in this paper
and can be seen from OpenVINO documentation [8].



IV. EXPERIMENTS

A. Model and dataset selection

For the experiment setup, we selected the one-stage state-of-
the-art YOLOv5 model for both object detection and segmen-
tation tasks and utilized the provided training and validation
pipeline from [9].

Object detection labels Object semantic segmentation masks

Fig. 4. Convert semantic segmentation masks to bounding boxes with masks

To simulate a perception application of driving and road
scenarios, we replaced the original COCO dataset [10] with
fine-grained Cityscapes semantic segmentation dataset, where
detailed masks for all objects are recorded in various weather
conditions and at different cities in Europe. In total, 2975 im-
ages from training set and 500 images from validation set are
selected to provide comprehensive coverage and generalization
of the road scenes. Among the 30 annotated semantic classes
defined in CityScape dataset, we picked 10 most representative
ones from vehicle, pedestrian and object categories. Notice-
ably, the numbers of instances per class in the training set are
severely imbalanced with a heavy focus on cars, traffic signs
and person as shown below in Figure 6.

Fig. 5. Mosaic augmentation

The ground truth semantic segmentation masks for the
Cityscapes dataset are converted to 2D bounding boxes for
object detection tasks using the maximum and minimum
values along the x-axis and y-axis. For the segmentation
task, the same bounding box computed for OD along with
the original segmentation mask is used. The training set is
augmented with scaling, rotation, color space adjustment. The

Fig. 6. Occurrence of instances per class

TABLE II
MODEL COMPLEXITY BETWEEN STUDENT AND TEACHER

Model Number of Parameters FLOPS

YOLOv5x (teacher) 86,278,375 27 − 1
YOLOv5s (student) 7,046,599 28 − 1

Mosaic augmentation (mixing 4 training images with random
scaling) shown in figure 5 to further enhance the training
process and prevent over-fitting to the training data.

To prepare the models for our distillation and optimization
pipeline, a cumbersome teacher of YOLOv5 extra large model
and a relatively light weight student YOLOv5 small model are
trained from scratch for 100 epochs with input image size of
640 x 640 pixels. To simulate the resource limited setup, we
select the inference device as an Intel i7-8700 CPU, while
training is performed on a GPU cluster service. The inference
time and accuracy for both models are recorded on the CPU
hardware establish baselines. The 2 models share the same
architecture while different in network depth and width II. The
selected extra large model has layer depth multiple of 4 and
width multiple of 2.5 compared to student model resulting
in better generalization capability in terms of mean average
precision at the sacrifice of computational complexity.

B. Knowledge Distillation

For the teacher model, a YOLOv5 extra large model is
trained on the selected Cityscapes dataset for 100 epochs. For
the student model, a YOLOv5s model is trained with both
ground truth labels and teacher model YOLOv5x with feature
imitation.

As shown in figure 7, the imitation feature is selected to
be the feature layer with the highest resolution. For both
teacher and student models, the 16th layer is chosen for feature
imitation.

In our experiment, the IOU hyper-parameter Ψ is set to 0.5
the λ in the loss function 2 is set to 0.01. Both YOLOv5x
and YOLOv5s models are trained on the Cityscapes dataset
with for 100 epochs as baseline results III and knowledge
distillation model on a single GPU RTX A2000 for 300 epochs
for comparison IV. Knowledge distillation on segementation
tasksa is not implemented in this project, but it can accom-



TABLE III
MAP BASELINE AND COMPARISON FOR OBJECT DETECTION DISTILLATION

Model mAP50 mAP50−95

Yolov5x.pt ∼100 0.523 0.311

Yolov5s.pt (from scratch) ∼100 0.418 0.223

Yolov5s.pt (KD) ∼100 0.377 0.198

Yolov5s.pt (KD) ∼200 0.422 (+0.004) 0.224 (+0.001)

TABLE IV
MAP FOR OBJECT DETECTION DISTILLATION

Class all car traffic sign rider person bicycle traffic light bus motorcycle truck train

mAP50 Before KD 0.418 0.697 0.374 0.444 0.481 0.395 0.367 0.501 0.292 0.3 0.333

mAP50−95 Before KD 0.223 0.445 0.184 0.23 0.229 0.177 0.144 0.36 0.104 0.202 0.154

mAP50 After KD 0.422 0.707 0.382 0.441 0.479 0.38 0.358 0.455 0.295 0.351 0.334

mAP50−95 After KD 0.224 0.457 0.196 0.229 0.232 0.178 0.144 0.319 0.106 0.243 0.14

TABLE V
MAP AND INFERENCE LATENCY COMPARISON FOR OBJECT DETECTION TASK

Model Average Inference speed (ms) Size (MB) mAP50 mAP50−95

YOLOv5x.onnx 620.7 329.0 0.523 0.311

YOLOv5x default quantization 291.2 84.1 0.527(+0.004) 0.307(-0.004)

YOLOv5x accuracy aware quantization 307.4 84.0 0.519(-0.004) 0.306(-0.005)

YOLOv5s.onnx 70.1 27.0 0.425 0.228

YOLOv5s default quantization 36.1 7.7 0.418(-0.007) 0.224(-0.004)

YOLOv5s accuracy aware quantization 38.5 84.0 0.416(-0.009) 0.219(-0.008)

plished in a similar way with the imitation loss computed from
the 16th layer feature map.

Detect

Imitation feature

Fig. 7. The 16th layer is chosen for feature imitation

C. Optimization Details

The trained YOLOv5 small and extra large models for
object detection and segmentation are first converted to ONNX

model format for inference purpose. The mean average pre-
cision (mAP ) across 10 classes and inference speed tested
on the Intel i7-8700 CPU are recorded as the baseline. The
models are then passed through OpenVINO model optimizer
to perform various optimization techniques such as linear oper-
ation fusing and grouped convolution fusing. The OpenVINO
framework provides an intermediate representation format (IR)
and model is optimized for Intel specific hardware (i7-8700
CPU for our usage).

The default quantization and accuracy aware quantization
methods are explored, and the original validation set from
Cityscapes is used for calibration. The mAP from 0 to 0.5
(mAP50) bounding box IOU and mAP from IOU of 50
percent to 95 percent with 5 percent increments(mAP50−95)
are used as the object detection models’ calibration metric,
while the mAP50 and mAP50−95 mask IOU are used for the
segmentation models during quantization. We performed both
default quantization and accuracy aware quantization methods
with random 300 images selected from the validation set. The
default quantization method prepares the layer for quantization
by aligning ranges of Convolution layer output activation,



Fig. 8. loss/epochs during training

then it inserts a “Fake quantization” operation before each
layer and tune the scaling parameter based on calibration
dataset. Lastly, it adjusts the biases of Convolution and fully
connected layer to minimize quantization error. The accuracy
aware quantization method extends the default algorithm and
computes the mismatch in target accuracy metric before initial
quantization. It creates a ranking subset and reverts the lay-
ers that cause majority of mismatches in a sequential order
until new accuracy drop is within the defined range. The
quantization results are shown in table V for both methods
with input image size of 640 x 640 pixels. The accuracy
drop (mAP score) for accuracy aware training is set to 0.01.
Smaller thresholds are also explored, but they will not lead to
convergence.

D. Results and analysis

1) Knowledge Distillation: The knowledge distillation net-
work was trained with 0.01 imitation weight, 0.05 bounding
box weight and 0.5 for object class cross entropy loss weight
for 300 epochs, the batch size is set as 16, hyper-parameters
can be found in VI. With a pre-trained YOLOv5x model, the
imitation loss is calculated with the inference result from the
teacher model, the overall training time is 2x of the single
model training pipeline.

TABLE VI
HYPER-PARAMETERS IN KNOWLEDGE DISTILLATION NETWORK TRAINING

learning rate 0.01

momentum: 0.937
weight decay: 0.0005

box loss weight: 0.05
class CE loss weight: 0.5

epochs: 300
IOU thresholding hyperparameter: 0.5

After training for 300 epochs, comparing with the YOLOv5s
object detection model trained from scratch, the overall high-
est mAP50 and mAP50−95 of knowledge distillation stu-
dent model YOLOv5s has negligible improvement on the
Cityscapes validation set, the mAP of the class truck has
increased for 5% and 4% on mAP50 and mAP50−95 respec-
tively. Inspired by the implementation on Faster RCNN in
the original paper, we select 5 anchors for each of the grids‘
in the 16th layer feature map in the YOLOv5s model with
40×40 grid size. In the training of the baseline object detection
model, the anchor size is determined with k-means using all
ground truth bounding boxes in the training dataset. For further

improvement, a fine tune of anchor boxes on the feature map is
needed. Also, multiple feature layer (19th and 22th) imitation
can be added for more fine-grained distillation.

2) Quantization: After comparing the student with KD
mAP results against the one trained from scratch, we see no
significant improvements. Therefore, the pre-trained student
model is passed to the quantization block for further opti-
mization. To verify the quantization performance and gener-
alization capabilities, we optimized all available student and
teacher models. From table V, we observe that quantization
significantly reduces the model inference time across models
(v5x and v5s) and across detection tasks (object detection
and segmentation). Segmentation results can be found in
Appendix. The quantized model inference times are reduced
on average by about 48 percent while suffering a minimum
performance drop. The mAP50 and mAP50−95 both dropped
for less than 1 percent compared to the original models. The
default quantization method can already perform well with
a set of 300 calibration images, while the accuracy aware
quantization performs slightly worse than the default method.
This observation is uniform across models and tasks. As the
accuracy aware quantization uses default method as intermedi-
ate archive, it performs further accuracy metrics analysis and
removes quantization layers and repeats the calibration process
until the metric requirements are satisfied. For object detection
YOLOv5x models, the accuracy-aware quantized model takes
16.2 ms longer per image for inference time compared to
the default one as some of the “FakeQuanization” layers are
removed to satisfy accuracy metrics. The accuracy drops are
within the defined 1 percent maximum drop range, but greater
than default quantization drops. This can be caused by error
accumulation within the model during the calibration process
and calibration step size causing the parameters to traverse
further away from local optima. In addition, the parameters
produced by default quantization is already calibrated on the
selected 300 images, further calibration performed on the same
image set might be lead to worse generalization capability
as it is over-fitting the quantized parameter to the specific
dataset. Overall, quantization results are consistent and it
greatly reduces model inference time without sacrificing the
model accuracy.

V. CONCLUSION

This report proposed a 2-stage deployment and optimiza-
tion pipeline that reduces the model inference speed without
severely sacrificing model accuracy. The pipeline uses knowl-
edge distillation to train/fine-tune the student model first and
then uses quantization for further optimization for inference
performance. We performed verification individually between
the 2 stages and compared the accuracy metrics and inference
speed between the optimized models and original models. We
conclude that the proposed 2-stage deployment and optimiza-
tion pipeline can reduce inference speed significantly while
maintaining flexibility for adaptation across model architec-
tures and objectives (object detection and segmentation).



REFERENCES

[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020. 1

[2] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018. 1

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016. 1

[4] G. Hinton, O. Vinyals, J. Dean, et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.
1

[5] T. Wang, L. Yuan, X. Zhang, and J. Feng, “Distilling object detectors
with fine-grained feature imitation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4933–
4942, 2019. 1, 2, 3

[6] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018. 2, 3

[7] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” Low-Power Computer Vision, p. 291–326, 2022. 2

[8] “Quantizing models post-training¶.” 2, 3
[9] G. Jocher, “YOLOv5 by Ultralytics,” 5 2020. 4

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision, pp. 740–755,
Springer, 2014. 4

APPENDIX

TABLE VII
MAP AND INFERENCE LATENCY COMPARISON FOR SEMANTIC

SEGMENTATION TASK

Model Average Inference speed (ms) Size (MB) mAP50 mAP50−95

YOLOv5x.onnx 700.5 337.0 0.38 0.17

YOLOv5x default quantization 291.2 86.1 0.38(+0.000) 0.167(-0.003)

YOLOv5x accuracy aware quantization 379.3 86.0 0.376(-0.004) 0.165(-0.005)

YOLOv5s.onnx 97.7 28.7 0.27 0.106

YOLOv5s default quantization 55.5 8.1 0.267(-0.003) 0.105(-0.001)

YOLOv5s accuracy aware quantization 8.1 84.0 0.264(-0.006) 0.104(-0.002)


